Главная » 2017 » Октябрь » 30 » Консультация №3 ЕГЭ физика 11 класс
17:15
Консультация №3 ЕГЭ физика 11 класс

Блок формул №3 7 класс

21) Условие плавание тел:

Если  Fтяж > Fа, то тело тонет

Если Fтяж = Fа, то тело плавает

Если Fтяж < Fа, то тело всплывает

Если  ρтела > ρжидкости , то тело тонет

Если ρтела = ρжидкости , то тело плавает

Если ρтела < ρжидкости , то тело всплывает

22)работа A=F*S    [A]=1Дж

23)мощность N=A/t      N=F*v    [N]=1Вт

24)Условие равновесия рычага: F1/F2 = L2/L1

25) Момент силы M=F*L ,      [M]=1H*м

Правило моментов: M1=M2,  F1*L1 = F2*L2

26) Подвижный блок F=P/2

27) кпд = Аполезная/Азатраченная *100%

28)кинетическая энергия Ек=m*v*v/2

29) потенциальная энергия Еп = mgh     Еп=k*x*x/2

30) Золотое правило механики A1=A2

Механическое движение тел изучается в разделе физики, который называется механикой. Основная задача механики – определить положение тела в любой момент времени.

Одна из основных частей механики, которая называется кинематикой, рассматривает движение тел без выяснения причин этого движения. Кинематика отвечает на вопрос: как движется тело? Другой важной частью механики является динамика, которая рассматривает действе одних тел на другие как причину движения. Динамика отвечает на вопрос: почему тело движется именно так, а не иначе?

 

1) основные понятия кинематики

Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

Механическое движение относительно. Движение одного и того же тела относительно разных тел оказывается различным. Для описания движения тела нужно указать, по отношению к какому телу рассматривается движение. Это тело называют телом отсчета.

Система координат, связанная с телом отсчета, и часы для отсчета времени образуют систему отсчета, позволяющую определять положение движущегося тела в любой момент времени.

В Международной системе единиц (СИ) за единицу длины принят метр, а за единицу времени – секунда.

Всякое тело имеет определенные размеры. Различные части тела находятся в разных местах пространства. Однако, во многих задачах механики нет необходимости указывать положения отдельных частей тела. Если размеры тела малы по сравнению с расстояниями до других тел, то данное тело можно считать его материальной точкой. Так можно поступать, например, при изучении движения планет вокруг Солнца.

Если все части тела движутся одинаково, то такое движение называется поступательным. Поступательно движутся, например, кабины в аттракционе «Колесо обозрения», автомобиль на прямолинейном участке пути и т. д. При поступательном движении тела его также можно рассматривать как материальную точку.

Тело, размерами которого в данных условиях можно пренебречь, называется материальной точкой.

Понятие материальной точки играет важную роль в механике.

Перемещаясь с течением времени из одной точки в другую, тело (материальная точка) описывает некоторую линию, которую называют траекторией движения тела.

Положение материальной точки в пространстве в любой момент времени (закон движения) можно определять либо с помощью зависимости координат от времени x = x (t), y = y (t), z = z (t) (координатный способ), либо при помощи зависимости от времени радиус-вектора (векторный способ), проведенного из начала координат до данной точки (рис. 1.1.1).

Рисунок 1.1.1.
Определение положения точки с помощью координат x = x (t), y = y (t) и z = z (t) и радиус-вектора . – радиус-вектор положения точки в начальный момент времени

Перемещением тела называют направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением. Перемещение есть векторная величина.

Пройденный путь l равен длине дуги траектории, пройденной телом за некоторое время t. Путь – скалярная величина.

Если движение тела рассматривать в течение достаточно короткого промежутка времени, то вектор перемещения окажется направленным по касательной к траектории в данной точке, а его длина будет равна пройденному пути.

ля характеристики движения вводится понятие средней скорости:

 

В физике наибольший интерес представляет не средняя, а мгновенная скорость, которая определяется как предел, к которому стремится средняя скорость на бесконечно малом промежутке времени Δt:

 

Мгновенная скорость тела в любой точке криволинейной траектории направлена по касательной к траектории в этой точке. Различие между средней и мгновенной скоростями показано на рис. 1.1.3.

Рисунок 1.1.3.
Средняя и мгновенная скорости. , , – перемещения за времена соответственно. При t → 0 

 

 

Мгновенным ускорением (или просто ускорением) тела называют предел отношения малого изменения скорости к малому промежутку времени Δt, в течение которого происходило изменение скорости:

 

Направление вектора ускорения в случае криволинейного движения не совпадает с направлением вектора скорости Составляющие вектора ускорения называют касательным (тангенциальным) и нормальным ускорениями (рис. 1.1.5).

Рисунок 1.1.5.
Касательное и нормальное ускорения

Касательное ускорение указывает, насколько быстро изменяется скорость тела по модулю:

 

Вектор направлен по касательной к траектории.

Нормальное ускорение указывает, насколько быстро скорость тела изменяется по направлению.

Криволинейное движение можно представить как движение по дугам окружностей (рис. 1.1.6).

Рисунок 1.1.6.
Движение по дугам окружностей

Нормальное ускорение зависит от модуля скорости υ и от радиуса R окружности, по дуге которой тело движется в данный момент:

 

Вектор всегда направлен к центру окружности (см. §1.6).

Из рис. 1.1.5 видно, что модуль полного ускорения равен

 

 Чтобы задать векторную величину, нужно задать ее модуль и указать направление. Векторные величины подчиняются определенным математическим правилам. Вектора можно проектировать на координатные оси, их можно складывать, вычитать и т. д.

2) относительность движения
относительная скорость, закон сложения скоростей:

 
(*)

Здесь – скорость тела в «неподвижной» системе отсчета XOY, – скорость тела в «движущейся» системе отсчета X'O'Y'. Скорости и иногда условно называют абсолютной и относительной скоростями; скорость называют переносной скоростью. Абсолютная скорость тела равна векторной сумме его относительной скорости и переносной скорости движущейся системы отсчета.

В общем случае, при движениях систем отсчета с ускорением друг относительно друга, ускорения тела в различных системах отсчета оказываются различными.

3) ПРД

Простейшим видом механического движения является движение тела вдоль прямой линии с постоянной по модулю и направлению скоростью. Такое движение называется равномерным. При равномерном движении тело за любые равные промежутки времени проходит равные пути. Для кинематического описания равномерного прямолинейного движения координатную ось OX удобно расположить по линии движения. Положение тела при равномерном движении определяется заданием одной координаты x. Вектор перемещения и вектор скорости всегда направлены параллельно координатной оси OX. Поэтому перемещение и скорость при прямолинейном движении можно спроектировать на ось OX и рассматривать их проекции как алгебраические величины.

Если в некоторый момент времени t1 тело находилось в точке с координатой x1, а в более поздний момент t2 – в точке с координатой x2, то проекция перемещения Δs на ось OX за время Δt = t2 – t1 равна

Δs = x2 – x1.

Эта величина может быть и положительной и отрицательной в зависимости от направления, в котором двигалось тело. При равномерном движении вдоль прямой модуль перемещения совпадает с пройденным путем. Скоростью равномерного прямолинейного движения называют отношение

Если υ > 0, то тело движется в сторону положительного направления оси OX; при υ < 0 тело движется в противоположном направлении.

Зависимость координаты x от времени t (закон движения) выражается при равномерном прямолинейном движении линейным математическим уравнением:

x (t) = x0 + υt.

В этом уравнении υ = const – скорость движения тела, x0 – координата точки, в которой тело находилось в момент времени t = 0. График закона движения x(t) представляет собой прямую линию. Примеры таких графиков показаны на рис. 1.3.1.

Рисунок 1.3.1.
Графики равномерного прямолинейного движения

 

Чем больше угол α, который образует прямая с осью времени, т. е. чем больше наклон графика (крутизна), тем больше скорость тела. Иногда говорят, что скорость тела равна тангенсу угла α наклона прямой x (t).

4) РУПД В общем случае равноускоренным движением называют такое движение, при котором вектор ускорения остается неизменным по модулю и направлению. изучение равноускоренного движения сводится к изучению прямолинейного равноускоренного движения. В случае прямолинейного движения векторы скорости и ускорения направлены вдоль прямой движения. Поэтому скорость υ и ускорение a в проекциях на направление движения можно рассматривать как алгебраические величины.

при равноускоренном прямолинейном движении скорость тела определяется формулой

 
υ = υ0 + at.
(*)

В этой формуле υ0 – скорость тела при t = 0 (начальная скорость), a = const – ускорение. На графике скорости υ (t) эта зависимость имеет вид прямой линии (рис. 1.4.2).

Рисунок 1.4.2.
Графики скорости равноускоренного движения

По наклону графика скорости может быть определено ускорение a тела. Соответствующие построения выполнены на рис. 1.4.2 для графика I. Ускорение численно равно отношению сторон треугольника ABC:

 

Чем больше угол β, который образует график скорости с осью времени, т. е. чем больше наклон графика (крутизна), тем больше ускорение тела.

График скорости позволяет также определить проекцию перемещения s тела за некоторое время t. Выделим на оси времени некоторый малый промежуток времени Δt. Если этот промежуток времени достаточно мал, то и изменение скорости за этот промежуток невелико, т. е. движение в течение этого промежутка времени можно считать равномерным с некоторой средней скоростью, которая равна мгновенной скорости υ тела в середине промежутка Δt. Следовательно, перемещение Δs за время Δt будет равно Δs = υΔt. Это перемещение равно площади заштрихованной полоски (рис. 1.4.2). Разбив промежуток времени от 0 до некоторого момента t на малые промежутки Δt, получим, что перемещение s за заданное время t при равноускоренном прямолинейном движении равно площади трапеции ODEF. Соответствующие построения выполнены для графика II на рис. 1.4.2. Время t принято равным 5,5 с.

 

 

Так как υ – υ0 = at, окончательная формула для перемещения s тела при равномерно ускоренном движении на промежутке времени от 0 до t запишется в виде:

 
(**)

Для нахождения координаты y тела в любой момент времени t нужно к начальной координате y0 прибавить перемещение за время t:

 
(***)

Это выражение называют законом равноускоренного движения.

При анализе равноускоренного движения иногда возникает задача определения перемещения тела по заданным значениям начальной υ0 и конечной υ скоростей и ускорения a. Эта задача может быть решена с помощью уравнений, написанных выше, путем исключения из них времени t. Результат записывается в виде

Из этой формулы можно получить выражение для определения конечной скорости υ тела, если известны начальная скорость υ0, ускорение a и перемещение s:

Если начальная скорость υ0 равна нулю, эти формулы принимают вид

Следует еще раз обратить внимание на то, что входящие в формулы равноускоренного прямолинейного движения величины υ0, υ, s, a, y0 являются величинами алгебраическими. В зависимости от конкретного вида движения каждая из этих величин может принимать как положительные, так и отрицательные значения.

5) Свободным падением тел называют падение тел на Землю в отсутствие сопротивления воздуха (в пустоте).

Ускорение, с которым падают на Землю тела, называется ускорением свободного падения. Вектор ускорения свободного падения обозначается символом он направлен по вертикали вниз. В различных точках земного шара в зависимости от географической широты и высоты над уровнем моря числовое значение g оказывается неодинаковым, изменяясь примерно от 9,83 м/с2 на полюсах до 9,78 м/с2 на экваторе.

Простым примером свободного падения является падение тела с некоторой высоты h без начальной скорости. Свободное падение является прямолинейным движением с постоянным ускорением. Если направить координатную ось OY вертикально вверх, совместив начало координат с поверхностью Земли, то для анализа свободного падения без начальной скорости можно использовать формулу (*) §1.4, положив υ0 = 0, y0 = h, a = –g. Обратим внимание на то, что если тело при падении оказалось в точке с координатой y < h, то перемещение s тела равно s = y – h < 0. Эта величина отрицательна, так как тело при падении перемещалось навстречу выбранному положительному направлению оси OY. В результате получим:

υ = –gt.

Скорость отрицательна, так как вектор скорости направлен вниз.

Время падения tп тела на Землю найдется из условия y = 0:

Скорость тела в любой точке составляет:

В частности, при y = 0 скорость υп падения тела на Землю равна

Пользуясь этими формулами, можно вычислить время падения тела с данной высоты, скорость падения тела в любой момент после начала падения и в любой точке его траектории и т. д.

Аналогичным образом решается задача о движении тела, брошенного вертикально вверх с некоторой начальной скоростью υ0. Если ось OY по-прежнему направлена вертикально вверх, а ее начало совмещено с точкой бросания, то в формулах равноускоренного прямолинейного движения следует положить: y0 = 0, υ0 > 0, a = –g. Это дает:

υ = υ0 – gt.

Через время υ0 / g скорость тела υ обращается в нуль, т. е. тело достигает высшей точки подъема. Зависимость координаты y от времени t выражается формулой

Тело возвращается на землю (y = 0) через время 0 / g, следовательно, время подъема и время падения одинаковы. Во время падения на землю скорость тела равна –υ0, т. е. тело падает на землю с такой же по модулю скоростью, с какой оно было брошено вверх.

Максимальная высота подъема

 

Задача о свободном падении тел тесно связана с задачей о движении тела, брошенного под некоторым углом к горизонту. Для кинематического описания движения тела удобно одну из осей системы координат (ось OY) направить вертикально вверх, а другую (ось OX) – расположить горизонтально. Тогда движение тела по криволинейной траектории можно представить как сумму двух движений, протекающих независимо друг от друга – движения с ускорением свободного падения вдоль оси OY и равномерного прямолинейного движения вдоль оси OX. На рис. 1.5.2 изображен вектор начальной скорости тела и его проекции на координатные оси.

Рисунок 1.5.2.
Движение тела, брошенного под углом к горизонту. Разложение вектора начальной скорости тела по координатным осям

Таким образом, для движения вдоль оси OX имеем следующие условия:

x0 = 0, υ0x = υ0 cos α, ax = 0,

а для движения вдоль оси

y0 = 0, υ0y = υ0 sin α, ay = –g.

Приведем здесь некоторые формулы, описывающие движение тела, брошенного под углом α к горизонту.

Время полета:

Дальность полета:

Максимальная высота подъема:

Движение тела, брошенного под углом к горизонту, происходит по параболической траектории. В реальных условиях такое движение может быть в значительной степени искажено из-за сопротивления воздуха, которое может во много раз уменьшить дальность полета тела.

Задание: ЕГЭ 2016 (2017) физика, сборник заданий Н.К. Ханнанов, Г.Г.Никифоров, В.А. Орлов Раздел Кинематика

Просмотров: 507 | Добавил: NazaR | Рейтинг: 0.0/0
Всего комментариев: 0
avatar